Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(21): 9953-9962, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37871156

RESUMO

Information encryption strategies have become increasingly essential. Most of the fluorescent security patterns have been made with a lateral configuration of red, green, and blue subpixels, limiting the pixel density and security level. Here we report vertically stacked, luminescent heterojunction micropixels that construct high-resolution, multiplexed anticounterfeiting labels. This is enabled by meniscus-guided three-dimensional (3D) microprinting of red, green, and blue (RGB) dye-doped materials. High-precision vertical stacking of subpixel segments achieves full-color pixels without sacrificing lateral resolution, achieving a small pixel size of ∼µm and a high density of over 13,000 pixels per inch. Furthermore, a full-scale color synthesis for individual pixels is developed by modulating the lengths of the RGB subpixels. Taking advantage of these unique 3D structural designs, trichannel multiplexed anticounterfeiting Quick Response codes are successfully demonstrated. We expect that this work will advance data encryption technology while also providing a versatile manufacturing platform for diverse 3D display devices.

2.
ACS Nano ; 17(12): 11645-11654, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307592

RESUMO

Self-assembly of colloidal nanoparticles has generated tremendous interest due to its widespread applications in structural colorations, sensors, and optoelectronics. Despite numerous strategies being developed to fabricate sophisticated structures, the heterogeneous self-assembly of a single type of nanoparticle in one step remains challenging. Here, facilitated by spatial confinement induced by a skin layer in a drying droplet, we achieve the heterogeneous self-assembly of a single type of nanoparticle by quickly evaporating a colloid-poly (ethylene glycol) (PEG) droplet. During the drying process, a skin layer forms at the droplet surface. The resultant spatial confinement assembles nanoparticles into face-centered-cubic (FCC) lattices with (111) and (100) plane orientations, generating binary bandgaps and two structural colors. The self-assembly of nanoparticles can be regulated by varying the PEG concentration so that FCC lattices with homo- or heterogeneous orientation planes can be prepared on demand. Besides, the approach is applicable for diverse droplet shapes, various substrates, and different nanoparticles. The one-pot general strategy breaks the requirements for multiple types of building blocks and predesigned substrates, extending the fundamental understanding underlying colloidal self-assembly.

3.
Anal Chem ; 95(10): 4644-4652, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36855862

RESUMO

Most fluorescence-based bioanalytical applications need labeling of analytes. Conventional labeling requires washing to remove the excess fluorescent labels and reduce the noise signals. These pretreatments are labor intensive and need specialized equipment, hindering portable applications in resource-limited areas. Herein, we use the aqueous two-phase system (ATPS) to realize the partitioning-induced isolation of labeled analytes from background signals without extra processing steps. ATPS is formed by mixing two polymers at sufficiently high concentrations. ATPS-based isolation is driven by intrinsic affinity differences between analytes and excess labels. To demonstrate the partitioning-induced isolation and analysis, fluorescein isothiocyanate (FITC) is selected as the interfering fluorophore, and a monoclonal antibody (IgG) is used as the analyte. To optimize ATPS compositions, different molecular weights and mass fractions of polyethylene glycol (PEG) and dextran and different phosphate-buffered saline (PBS) concentrations are investigated. Various operational scales of our approach are demonstrated, suggesting its compatibility with various bioanalytical applications. In centimeter-scale ATPS, the optimized distribution ratios of IgG and FITC are 91.682 and 0.998 using PEG 6000 Da and dextran 10,000 Da in 10 mM PBS. In millimeter-scale ATPS, the analyte is enriched to 6.067 fold using 15 wt % PEG 35,000 Da and 5 wt % dextran 500,000 Da in 10 mM PBS. In microscale ATPS, analyte dilutions are isolated into picoliter droplets, and the measured fluorescence intensities linearly correlated with the analyte concentrations (R2 = 0.982).


Assuntos
Dextranos , Água , Fluoresceína-5-Isotiocianato , Polietilenoglicóis , Polímeros , Imunoglobulina G
4.
ACS Appl Mater Interfaces ; 15(6): 7663-7672, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734973

RESUMO

The cuff electrode can be wrapped in the columnar or tubular biological tissue for physiological signal detection or stimulation regulation. The reliable and non-excessive interfaces between the electrode and complex tissue are critical. Here, we propose a self-closing stretchable cuff electrode, which is able to self-close onto the bundles of tissues after dropping water. The curliness is realized by the mechanical stress mismatch between different layers of the elastic substrate. The material of the substrate can be selected to match the modulus of the target tissue to achieve minimal constraint on the tissue. Moreover, the self-closing structure keeps the cuff electrode free from any extra mechanical locking structure. For in vivo testing, both sciatic nerve stimulation to drive muscles and electromyographic signal monitoring around a rat's extensor digitorum longus for 1 month prove that our proposed electrode conforms well to the curved surface of biological tissue.


Assuntos
Músculo Esquelético , Nervo Isquiático , Ratos , Animais , Estimulação Elétrica , Nervo Isquiático/fisiologia , Eletrodos , Músculo Esquelético/fisiologia , Eletrodos Implantados
5.
Adv Mater ; 34(51): e2205649, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36222390

RESUMO

Living cells comprise diverse subcellular structures, such as cytoskeletal networks, which can regulate essential cellular activities through dynamic assembly and synergistic interactions with biomolecular condensates. Despite extensive efforts, reproducing viscoelastic networks for modulating biomolecular condensates in synthetic systems remains challenging. Here, a new aqueous two-phase system (ATPS) is proposed, which consists of poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX), to construct viscoelastic networks capable of being assembled and dissociated dynamically to regulate the self-assembly of condensates on-demand. Viscoelastic networks are generated using liquid-liquid phase-separated DEX droplets as templates and the following liquid-to-solid transition of the PNIPAM-rich phase. The resulting networks can dissolve liquid fused in sarcoma (FUS) condensates within 5 min. This work demonstrates rich phase-separation behaviors in a single ATPS through incorporating stimuli-responsive polymers. The concept can potentially be applied to other macromolecules through other stimuli to develop materials with rich phase behaviors and hierarchical structures.

6.
Langmuir ; 38(32): 9721-9740, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35918302

RESUMO

The study of liquid marbles (LMs) composed of stabilizing liquid droplets with solid particles in a gaseous environment has matured into an established area in surface and colloid science. The minimized "solid-liquid-air" triphase interface enables LMs to drastically reduce adhesion to a solid substrate, making them unique non-wetting droplets transportable with limited energy. The small volume, enclosed environment, and simple preparation render them suitable microreactors in industrial applications and processes such as cell culture, material synthesis, and blood coagulation. Extensive application contexts request precise and highly efficient manipulations of these non-wetting droplets. Many external fields, including magnetic, acoustic, photothermal, and pH, have emerged to prepare, deform, actuate, coalesce, mix, and disrupt these non-wetting droplets. Electric fields are rising among these external stimuli as an efficient source for manipulating the LMs with high controllability and a significant ability to contribute further to proposed applications. This Feature Article attempts to outline the recent developments related to LMs with the aid of electric fields. The effects of electric fields on the preparation and manipulation of LMs with intricate interfacial processes are discussed in detail. We highlight a wealth of novel electric field-involved LM-based applications and beyond while also envisaging the challenges, opportunities, and new directions for future development in this emerging research area.

7.
ACS Nano ; 16(9): 13761-13770, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35904791

RESUMO

Soft robots, made from elastomers, easily bend and flex, but deformability constraints severely limit navigation through and within narrow, confined spaces. Using aqueous two-phase systems we print water-in-water constructs that, by aqueous phase-separation-induced self-assembly, produce ultrasoft liquid robots, termed aquabots, comprised of hierarchical structures that span in length scale from the nanoscopic to microsciopic, that are beyond the resolution limits of printing and overcome the deformability barrier. The exterior of the compartmentalized membranes is easily functionalized, for example, by binding enzymes, catalytic nanoparticles, and magnetic nanoparticles that impart sensitive magnetic responsiveness. These ultrasoft aquabots can adapt their shape for gripping and transporting objects and can be used for targeted photocatalysis, delivery, and release in confined and tortuous spaces. These biocompatible, multicompartmental, and multifunctional aquabots can be readily applied to medical micromanipulation, targeted cargo delivery, tissue engineering, and biomimetics.


Assuntos
Biomimética , Robótica , Elastômeros/química , Água
8.
Nano Lett ; 22(13): 5236-5243, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35731830

RESUMO

Spots with dual structural colors on the skin of some organisms in nature are of tremendous interest due to the unique function of their dye-free colors. However, imitation of them requires complicated manufacturing processes, expensive equipment, and multiple predesigned building blocks. In this work, a one-pot strategy based on the phase-separation-assisted nonuniform self-assembly of monosized silica nanoparticles is developed to construct domes with dual structural colors. In drying poly(ethylene glycol)-dextran-based (PEG-DEX) droplets, monosized nanoparticles distribute nonuniformly in two compartments due to the droplet inner flow and different nanoparticle compatibility with the two phases. The dome colors are derived from the self-assembled nanoparticles and are programmable by regulating the assembly conditions. The one-pot strategy enables the preparation of multicolor using only one type of building block. With the dual-color domes, encrypted patterns with a high volume of contents are designed, showing promising applications in information delivery.


Assuntos
Nanopartículas , Dióxido de Silício , Nanopartículas/química , Polietilenoglicóis/química , Dióxido de Silício/química
9.
Nanotechnology ; 33(15)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34952533

RESUMO

Voltage-driven stochastic magnetization switching in a nanomagnet has attracted more attention recently with its superiority in achieving energy-efficient artificial neuron. Here, a novel pure voltage-driven scheme with ∼27.66 aJ energy dissipation is proposed, which could rotate magnetization vector randomly using only a pair of electrodes covered on the multiferroic nanomagnet. Results show that the probability of 180° magnetization switching is examined as a sigmoid-like function of the voltage pulse width and magnitude, which can be utilized as the activation function of designed neuron. Considering the size errors of designed neuron in fabrication, it's found that reasonable thickness and width variations cause little effect on recognition accuracy for MNIST hand-written dataset. In other words, the designed pure voltage-driven spintronic neuron could tolerate size errors. These results open a new way toward the realization of artificial neural network with low power consumption and high reliability.

10.
Natl Sci Rev ; 8(3): nwaa302, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34694298

RESUMO

[This corrects the article DOI: 10.1093/nsr/nwz188.].

11.
Natl Sci Rev ; 7(3): 629-643, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34692082

RESUMO

Endothelialization is of great significance for vascular remodeling, as well as for the success of implanted vascular grafts/stents in cardiovascular disease treatment. However, desirable endothelialization on synthetic biomaterials remains greatly challenging owing to extreme difficulty in offering dynamic guidance on endothelial cell (EC) functions resembling the native extracellular matrix-mediated effects. Here, we demonstrate a bilayer platform with near-infrared-triggered transformable topographies, which can alter the geometries and functions of human ECs by tunable topographical cues in a remote-controlled manner, yet cause no damage to the cell viability. The migration and the adhesion/spreading of human ECs are respectively promoted by the temporary anisotropic and permanent isotropic topographies of the platform in turn, which appropriately meet the requirements of stage-specific EC manipulation for endothelialization. In addition to the potential of promoting the development of a new generation of vascular grafts/stents enabling rapid endothelialization, this stage-specific cell-manipulation platform also holds promise in various biomedical fields, since the needs for stepwise control over different cell functions are common in wound healing and various tissue-regeneration processes.

12.
Small ; 16(9): e1903798, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31650698

RESUMO

The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine-related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic-based materials in the fields of diagnostics, drug delivery, organs-on-chips, tissue engineering, and stimuli-responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on-demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.


Assuntos
Microfluídica , Nanoestruturas , Sistemas de Liberação de Medicamentos , Microfluídica/instrumentação , Microfluídica/tendências , Nanoestruturas/química , Engenharia Tecidual
13.
ACS Appl Mater Interfaces ; 11(17): 15927-15935, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30973012

RESUMO

Micro/nanomotors can effectively convert other forms of energy into mechanical energy, which have been widely used in microscopic fields. However, it is still challenging to integrate the micro/nanomotors to perform complex tasks for broad applications. Herein, a new mode for driving the collective motion behaviors of integrated micro/nanomotors in a liquid by plasmonic heating is reported. The integrated micro/nanomotors, constituted by gold hollow microcone array (AuHMA), are fabricated via colloidal lithography. Owing to the excellent plasmonic-heating property of the AuHMA, the integrated micro/nanomotors can generate vapor bubbles in the liquid as exposure to near-infrared (NIR) irradiation, therefore inducing versatile motions via on/off NIR irradiation. The floating-diving motions are reversible for at least 60 cycles without fatigue. In addition, precise manipulation of the coordinated motion behaviors, including bending, convex, and jellyfish-like floating motions, can be realized by adjusting the irradiated positions of incident NIR light together with the sizes and shapes of AuHMA films. Moreover, the AuHMA film can act as a robust motor to drive a foam craft over 57-folds of its own weight as exposure to NIR irradiation. Our investigation into the NIR-driven AuHMA film provides a facile approach for obtaining integrated micro/nanomotors with controllable collective motions, which holds promise in remotely controlled smart devices and soft robotics in liquids.

14.
Chem Asian J ; 14(14): 2369-2387, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30924277

RESUMO

Organisms exhibit strong environmental adaptability by controllably adjusting their morphologies or fast locomotion; thus providing constant inspiration for scientists to develop artificial actuators that not only have diverse and sophisticated shape-morphing capabilities, but can also further transfer dynamic and reversible shape deformations into macroscopic motion under the following principles: asymmetric friction, the Marangoni effect, and counteracting forces of the surrounding conditions. Among numerous available materials for fabricating bioinspired artificial actuators, stimuli-responsive polymers are superior in their flexible features and the ability to change their physicochemical properties dynamically under external stimuli, such as temperature, pH, light, and ionic strength. Herein, different mechanisms, working principles, and applications of stimuli-responsive polymeric actuators are comprehensively introduced. Furthermore, perspectives on existing challenges and future directions of this field are provided.

15.
ACS Appl Mater Interfaces ; 10(28): 23583-23594, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29943973

RESUMO

The formation of complete and well-functioning endothelium is critical for the success of tissue-engineered vascular grafts yet remaining a fundamental challenge. Endothelium remodeling onto the lumen of tissue-engineered vascular grafts is affected by their topographical, mechanical, and biochemical characteristics. For meeting multiple requirements, composite strategies have recently emerged for fabricating hybrid scaffolds, where the integrated properties are tuned by varying their compositions. However, the underlying principle how the integrated properties of hybrid scaffolds regulate vascular endothelium remodeling remains unclear. To uncover the regulation effects of hybrid scaffolds on vascular endothelium remodeling, we prepared different biomimetic hybrid scaffolds using gelatin methacrylamide (GelMA) and poly-ε-caprolactone (PCL) and then investigated vascular endothelial cell responses on them. GelMA and PCL, respectively, conferred the resulting scaffolds with biomimetic bioactivity and mechanical properties, which were tuned by varying GelMA/PCL mass ratios (3:1, 1:1, or 1:3). On different GelMA/PCL hybrid scaffolds, distinct vascular endothelial cell responses were observed. Firm cell-scaffold/cell-cell interactions were rapidly established on the hybrid scaffolds with the highest mass ratio of bioactive GelMA. However, they were mechanically insufficient as vascular grafts. On the contrary, the scaffolds with the highest mass ratio of PCL showed significantly reinforced mechanical properties but poor biological performance. Between the two extremes, the scaffolds with the same GelMA/PCL mass ratio balanced the pros and cons of two materials. Therefore, they could meet the mechanical requirements of vascular grafts and support the early-stage vascular endothelial cell remodeling by appropriate biological signaling and mechanotransduction. This investigation experimentally proves that scaffold bioactivity is the dominant factor affecting vascular endothelial cell adhesion and remodeling, whereas mechanical properties are crucial factors for the integrity of endothelium. This work offers a universal design strategy for desirable vascular grafts for improved endothelium remodeling.


Assuntos
Endotélio Vascular , Biomimética , Células Cultivadas , Mecanotransdução Celular , Poliésteres , Engenharia Tecidual , Alicerces Teciduais
16.
ACS Appl Mater Interfaces ; 9(43): 38117-38124, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990758

RESUMO

Surfaces patterned with hydrophilic and hydrophobic regions provide robust and versatile means for investigating the wetting behaviors of liquids, surface properties analysis, and producing patterned arrays. However, the fabrication of integral and uniform arrays onto these open systems remains a challenge, thus restricting them from being used in practical applications. Here, we present a simple yet powerful approach for the fabrication of water droplet arrays and the assembly of photonic crystal bead arrays based on hydrophilic-hydrophobic patterned substrates. Various integral arrays are simply prepared in a high-quality output with a low cost, large scale, and uniform size control. By simply taking a breath, which brings moisture to the substrate surface, complex hydrophilic-hydrophobic outlined images can be revisualized in the discontinuous hydrophilic regions. Integration of hydrogel photonic crystal bead arrays into the "breath-taking" process results in breath-responsive photonic crystal beads, which can change their colors upon a mild exhalation. This state-of-the-art technology not only provides an effective methodology for the preparation of patterned arrays but also demonstrates intriguing applications in information storage and biochemical sensors.

17.
Sensors (Basel) ; 17(3)2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28257060

RESUMO

Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...